Geometric regularity criteria for incompressible Navier–Stokes equations with Navier boundary conditions
نویسندگان
چکیده
منابع مشابه
Gevrey Regularity for Navier–stokes Equations under Lions Boundary Conditions
The Navier–Stokes system is considered in a compact Riemannian manifold. Gevrey class regularity is proven under Lions boundary conditions in the cases of the 2D Rectangle, Cylinder, and Hemisphere. The cases of the 2D Sphere and 2D and 3D Torus are also revisited. MSC2010: 35Q30, 76D03
متن کاملSpectral analysis of the incompressible Navier-Stokes equations with different boundary conditions
The influence of boundary conditions on the spectrum of the incompressible Navier-Stokes equations is studied. The spectra associated to different types of boundary conditions are derived using the Fourier-Laplace technique. In particular, the effect of various combinations of generalized inand outgoing variables on the convergence to the steady state is investigated. The boundary conditions ar...
متن کاملRemarks on Regularity Criteria for the 3d Navier-stokes Equations
In this article, we study the regularity criteria for the 3D NavierStokes equations involving derivatives of the partial components of the velocity. It is proved that if ∇he u belongs to Triebel-Lizorkin space, ∇u3 or u3 belongs to Morrey-Campanato space, then the solution remains smooth on [0, T ].
متن کاملDual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions
In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational principle can be set in the constrained manifold of all S rank random fields with a prescribed value on the boundary, expressed in low rank ...
متن کاملBoundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
Non reflecting boundary conditions on artificial frontiers of the domain axe proposed for both incompressible and compressible Navier-Stokes équations. For incompressible flows, the boundary conditions lead to a well-posed problem, convey properly the vortices without any reflections on the artificial limits and allow to compute turbulent flows at high Reynolds numbers. For compressible flows, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis
سال: 2019
ISSN: 0362-546X
DOI: 10.1016/j.na.2019.06.003